&d

cloudogt

L

/I 3 THINGS EVERY DEVELOPER SHOULD
KNOW ABOUT K8S SECURITY

JOHANNES SCHNATTERER CLOUDOGU GMBH

VERSION: 201909252020-645D5FD

http://172.17.0.2:8000/3%20things%20every%20developer%20should%20know%20about%20K8s%20security.pdf

https://haveibeenpwned.com/PwnedWebsites
https://twitter.com/haveibeenpwned

Chegg

Hubd4Tech

MINECRREY

APOLLO

1173

st

Sumo

TORREKT

®

NeTPROSPEX

Sitistmady

@Z8

Win / Vista

@

det.com

LITTLE
MONSTERS

Modalo

NETSHOES

Awishbone.

Ty

ot of Satern

EyeEm

Giodern
) Business
® Solutions

NGU

Pocconecaiy

500

imgur

Wwo

b
&P

TARINGA!

VERITICD
— |

7K7K

©BOLT

Gz

7 s

+SHOTBOW

VICTORY

Dxat

- Phracks+

(stroPID

) I- -
Bombuj.eu
w
.a
COACHELLA

ooé‘

F/REQY Fm?
[E=0)

LOUNGE

BOARD

;

S | H E SkTorrent.eu

@xa0x360150 XBOXSCRE

MREXCeL com

[T oo

ABUSEWITH s

G iéidiution

r.sw

B

@Snail

D)

Mom
9 amwoncanes

A iéidiution

@mait.ru

Directory

\am’

\V/

&

TheFappening

Voip

ARed

@RVX

Fifoge-

HAUTELOOK

JustDate

®

DOPENCSGO

vtech

flvs

STARTER

MyFHA

Quantum
Stresser

D

TheTvDB.com
V-Tight Gel

split

%

B, Bit

Forbes

HEM' AKVA L

“EKimsufi

vy

SONY

THISHABBO

&
WARFRAME

KM.RU

pop—

SSUNDWAVE

3
&

andex

AERSERV

—
EPIENPL:

—

igmyspace

Copaueaii

OUKU

Eroticy.com

9 SpyFone

{3

whitepages

younow

3

i
Cfiabisom

dafont
com

R

“HLTV.0n

@F Y

RBXROGUS

o

LEAGUE
] EGENDS

matel

AR

@D ke

W mogul

TEkEeD

WHMSS

R

<plancestry

LEET

@rcsans

Retina

tumblr.

zomato

@ |

@eveammon

&

B houzz

piZap

REVERBNATION

stockX

zoosk

@

Bitcoin Forum

cheapassgamer

@oatacamp

ey Eore)

https://haveibeenpwned.com/PwnedWebsites
https://twitter.com/haveibeenpwned

https://de.wikipedia.org/wiki/Elfenbeinturm#/media/Datei:Altenmarkt_Kapelle_-_Elfenbeinerner_Turm.jpg

What about Security?

Plenty of security options

securityContext I'U NASNonRoot runAsUser privileged pl’OCMOunt
aIIoanvHegeEscaIatlon readOnlyRootFilesystem podsecurityPolicy

RBAC seccomp Lln UX CapabI“tIeS AppArmor SELINnux
NGtWOkaO”Cy FaICO Open PO“Cy Agent gVisor Kata Containers Nabla Containers

Service Mesh ... kubesec KubeBench

3 things every developer should know about K8s security

a very opinionated list of actions that make a huge difference with manageable effort
distilled from the experience of the last years developing and operating apps on k8s

https://memegenerator.net/instance/83566913/homer-simpson-boring

RBAC active by default since K8s 1.6
... but not if you migrated!

Every Container is mounted the token of its service account at
/var/run/secrets/kubernetes.io/serviceaccount/token
With RBAC the default service account is only authorized to read publicly accessible API info
A With legacy authz the default service account is cluster admin
You can test if your pod is authorized by executing the following in it:

curl --cacert /var/run/secrets/kubernetes.io/serviceaccount/ca.crt \
-H "Authorization: Bearer $(cat /var/run/secrets/kubernetes.io/serviceaccount/token)" \
https://${KUBERNETES_SERVICE_HOST}/api/vi/secrets

If a pod does not need access to K8s API, mounting the token can be disabled in the pod spec:
automountServiceAccountToken: false

“ Demo

Cluster legacy authz Cluster RBAC

Namespace 'de space ‘default’

Web Console Web Console

http://legacy-authz/
http://rbac/

A kind of firewall for communication between pods.

Apply to pods (podSelector)
within a namespace
via labels
Ingress or egress
to/from pods (in namespaces) or CIDRs (egress only)
for specific ports (optional)
Are enforced by the CNI Plugin (e.g. Calico)
A No Network Policies: All traffic allowed

& Helpful to get started:

)
Securing Cluster Networking with Network Policies - Ahmet Balkan

Interactively describes what a netpol does:

kubectl describe netpol <name>

https://github.com/ahmetb/kubernetes-network-policy-recipes
https://www.youtube.com/watch?v=3gGpMmYeEO8

Recommendation: Whitelist ingress traffic

In every namespace except kube-system:

Deny all ingress traffic between pods ...
... and then whitelist all allowed routes.

Advanced: ingress to kube -system namespace

A You might stop the apps in your cluster from working

For example, don't forget to:

Allow external access to ingress controller

(otherwise no more external access on any cluster resource)
Allow access to kube-dns/core-dns to every namespace
(otherwise no more service discovery by name)

Advanced: egress

Verbose solution:
Deny all egress traffic between pods ...
... and then whitelist all allowed routes...
... repeating all ingress rules. @
More pragmatic solution:
Allow only egress traffic within the cluster...
... and then whitelist pods that need access to the internet.

4Net pol pitfalls

Don't forget to whitelist your monitoring tools (e.g. Prometheus)

A restart of the pods might be necessary for the netpol to become effective

(e.g. Prometheus)

In order to match namespaces, labels need to be added to the namespaces, e.qg.

kubectl label namespace/kube-system namespace=kube-system

Matching both pods and namespace is only possible from k8s 1.11+

Restricting kube - system might be more of a challenge (DNS, ingress controller)
egress rules are more recent feature than ingress rules and seem less sophisticated
Policies might not be supported by CNI Plugin.

Make sure to test them!

On GKE: "at least 2 nodes of type nl-standard-1" are required

https://www.inovex.de/blog/test-kubernetes-network-policies/

Limitations

no option for cluster-wide policies
whitelisting egress for domain names instead of CIDRs

filtering on L7 (e.g. HTTP or gRPC)
netpols will not work in multi-cloud / cluster-federation scenarios

Possible solutions:

Proprietary extensions of CNI Plugin (e.g. cilium or calico)

Service Meshes provides similar features and work also work with multiple clusters.
Service Meshes operate on L7, NetPol on L3/4

- different strengths, support each other

https://istio.io/blog/2017/0.1-using-network-policy/

“ Demo

Cluster Network Policies

Fm
<

web-console:80 \ nosglclient:3000

Namespace defauit)) [Naméspace ‘production’

Web Console nosglclient

mongodb:/mongodb:27017

mongodb

http://nosqlclient/
http://web-console/

1§ Wrap-Up: Network Policies

My recommendations:

Definitely use DENY all ingress rule in non-kube - system namespaces

Use with care
rules in kube-system
egress rules

.10

Defines privilege and access control settings for a Pod or Container

See also: Secure Pods - Tim Allclair

.0

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://www.youtube.com/watch?v=GLwmJh-j3rs

Recommendation per Container

apivVersion: vi
kind: Pod
% 0o
metadata:
annotations:
seccomp.security.alpha.kubernetes.io/pod: runtime/default
spec:
containers:
- name: restricted
securityContext:
runAsNonRoot: true
runAsuUser: 100000
runAsGroup: 100000
readOnlyRootFilesystem: true
allowPrivilegeEscalation: false
capabilities:
drop:
- ALL

There is also a securityContext on pod level, but not all of those settings cannot be applied there.

Recommendation per Container in Detail (1)

allowPrivilegeEscalation: false
mitigates a process within the container from gaining higher privileges than its parent (the container
process)
E.g. sudo, setuid, Kernel vulnerabilities

seccomp.security.alpha.kubernetes.i0/pod: runtime/default

Enables e.g. docker's seccomp default profile that block 44/~300 Syscalls
Has mitigated some Kernel vulns in the past and might in the future @:

no seccomp profile is also one of the findings of the k8s security audit:
"capabilities": { "drop": ["ALL"] }

Reduces attack surface
Drops even the default caps:

https://docs.docker.com/engine/security/non-events/
https://www.cncf.io/blog/2019/08/06/open-sourcing-the-kubernetes-security-audit/
https://github.com/moby/moby/blob/master/oci/defaults.go#L14-L30

Recommendation per Container in Detalil (2)

runAsNonRoot: true - Container is not started when the user is root
runAsUser and runAsGroup > 10000
Reduces risk to run as user existing on host
In case of container escape UID/GID does not have privileges on host/filesystem
readOnlyRootFilesystem: true
Mounts the whole file system in the container read-only. Writing only allowed in volumes.
Makes sure that config or code within the container cannot be manipulated.
It's also more efficient (no CoW).

4 Security context pitfalls

readOnlyRootFilesystem - most applications need temp folders to write to
Run image locally using docker, access app (& run automated e2e/integration tests)
Then use docker diff to see a diff between container layer and image
and mount all folders listed there as emptyDir volumes in your pod

capabilities - some images require capabilities
Start container locally with docker and - -cap-drop ALL, then check logs for errors
Start again add caps as needed with e.g. - -cap-add CAP_CHOWN, check logs for errors

Start again with additional caps and so forth.
Add all necessary caps to k8s resource
Alternative: Find an image of same app that does not require caps, e.g. nginxinc/nginx-
unprivileged
runAsGroup - beta from K8s 1.14. Before that defaults to GID 0 @

https://github.com/kubernetes/enhancements/issues/213

4 Security context pitfalls - runAsNonRoot

Non-root verification only supports numeric user. @
runAsUser: 100000 in securityContext of pod or
USER 100000 in Dockerfile of image.
Some official images run as root by default.
Find a trusted image that does not run as root
e.g. for nginx, or postgres: &
Derive from the original image and create your own non-root image
e.g. nginx: €
UID 100000 might not have permissions to read/write. Possible solutions:
Init Container sets permissions for PVCs
Wrong permissions in container - chmod/chown in Dockerfile
Some applications require a user for UID in /etc/passwd
New image that contains a user for UID e.g. 100000 or
Create /etc/passwd with user in init container and mount into application container

https://hub.docker.com/r/bitnami/
https://github.com/schnatterer/nginx-unpriv

Tools

Find out if your cluster adheres to these and other good security practices:

() - managable amount of checks
)
a whole lot of checks,
even deny all ingress and egress NetPols and AppArmor Annotations

-» Be prepared for a lot of findings
- Create your own good practices

https://github.com/controlplaneio/kubesec
https://github.com/Shopify/kubeaudit

4 Demo

Security Context & PSP

Namespace 'wild-west'

nginx nginxinc/nginx-unprivileged

1§ Wrap-Up: Security Context

My recommendations

Security Context

Start with least privilege

Only differ if there's absolutely no other way
BTW - you can enforce Security Context Settings by using Pod Security Policies.
However, those cause a lot more effort to maintain.

.10

/ :
4t y developer sio_ul

4

P
v
i
e

a cluster-level resource [..] that define a set of conditions that a pod must run with in order to be
accepted into the system

https://kubernetes.io/docs/concepts/policy/pod-security-policy/

can be used to enforce security context cluster-wide
has additional options such as block pods that try to
enter node's Linux namespaces (net, PID, etc.)
mounting the docker socket,
binding ports to nodes,
starting privileged containers
etc.
more effort than security context and different syntax as in securityContext @

- Sitill highly recommended!

Too much ground to cover for 45 min!

G
®

See Demo Repo on last slide

Summary

IMHO ever person working with k8s should at least adhere to the following:

Enable RBAC!
Don't allow arbitrary connection between pods.
(e.g. use Network Policies to whitelist ingresses)
Start with least privilege for your containers:
Block privilege escalation via the security context of each container
Enable the seccomp default module via annotation of each pod
Try to run your containers
as non-root user, with UID & GID >= 10000,
with a read-only file system and
without capabilities.
Least privilege rules can either be set per container (securityContext) or cluster-wide (PodSecurityPolicy)

10.

&>

cloudogt

Johannes Schnatterer

Cloudogu GmbH
@

K8s Security series on JavaSPEKTRUM starting 05/2019

See also

Demo Source:

10.2

https://cloudogu.com/schulungen
https://cloudogu.com/blog
https://twitter.com/jschnatterer
https://twitter.com/cloudogu
https://github.com/cloudogu/k8s-security-demos

